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Abstract. The low-Q part (0.47 < Q (nm−1) < 4.15) of the static structure factorS(Q)
of 86Kr has been derived at five low densities and room temperature by a small-angle neutron
diffraction measurement and a careful treatment of experimental corrections. From the data the
small-Q dependence of the Fourier transformc(Q) of the direct correlation functionc(r) has been
obtained and has allowed the first accurate experimental determination of the long-range three-body
Axilrod–Teller potential strength in a classical fluid.

1. Introduction

The interatomic structure factor of a fluid contains useful information about both the short- and
long-range parts of the pair potential and also about higher-order potentials. The short-range
part is better understood and more accessible than the long-range part. But several theoretical
papers have emphasized the importance of experimental studies of the long-ranged terms. For
example Enderbyet al [1] consider the dependence of the structure factorS(Q) (related to the
Fourier transform of the pair correlation function) on the argumentQ, and for low values of
Q they write:

S(Q) = S(0) + S2Q
2 + S3Q

3 + · · · (1)

with

S3 = π2βn{S(0)}2B
12

(2)

whereβ = 1/kBT , T is the temperature,kB is the Boltzmann constant,S(0) = nχT /β, n is
the number density,χT is the isothermal compressibility, and the van der Waals termB is the
coefficient of the long-rangedr−6 term in the pair interaction (see equation (10)). Thisr−6
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interaction between two electronic ground state atoms is determined by the London dispersion
energy. ForS2 there is no known analytical expression in terms of the potential parameters.
Casanovaet al [2] considered the addition of the Axilrod–Teller (AT) three-body force [3]
in low-density gases, and showed that an additional density dependent term should be added
to theQ3 coefficient (2). In a later paper Matthai and March [4] used (1) to interpret an
extrapolationof the experimental data on liquid argon to very small values ofQ. This work
illustrated the experimental problems in isolating theQ3 term, namely that very accurate data
would be necessary at very small values ofQ, so that higher-order terms in (1) would be
negligible.

A more detailed analysis of theQ dependence, including numerical predictions, was
presented by Reatto and Tau [5]. In addition to discussing the classical behaviour of theQ3

term, they considered retardation effects related to the finite velocity of propagation of the
electromagnetic field. This effect alters theQ3 behaviour toQ4 ln(Q) at very low values of
Q, thus defining a lower limit for theQ range where theQ3 term can be detected. They
show, in fact, that, by measuring the Fourier transformc(Q) of the direct correlation function
(see equation (6)) in the range 0.5 < Q (nm−1) < 3.5 at intermediate density, one should be
able to extract theQ3 term, and that, for this purpose, the use ofc(Q) is preferable to that of
S(Q). Experimental determination of the coefficient of theQ3 term would be of fundamental
importance because of the direct and simple relationship with the long-range behaviour of the
interatomic interaction. Magliet al [6] applied for the first time the low-Q expansion for the
experimental determination of the coefficientB of the London dispersion term in argon, but
the experimental accuracy did not allow for a determination of the strength of the AT-triple
dipole interaction.

In addition, the density dependence ofS(Q) at constantQ is interesting, especially the
relationships involving both pair and many-body forces, which has been discussed in several
papers [7–9]. For example Tauet al [9] reviewed recent data on krypton and calculated the
contribution of various models for the pair and three-body interactions to the coefficients of
the density expansions ofS(Q) and c(Q). They find that the dependence ofc(Q) on the
detailed shape of the pair potential is mainly contained in the constant term (i.e. the zero-
density limit), but this is not the case forS(Q). So, also here it is preferable to usec(Q)
instead ofS(Q).

In this paper we try to meet some of these challenges, by experiments on krypton gas.
Our method is to improve the quality of the data by employing the isotope86Kr and also to
use a modern small-angle diffractometer in order to extend to lower values the range ofQ

investigated in the earlier extensive study by Teitsma and Egelstaff [7]. They covered a wide
range of densities of natural krypton at room temperature and used a conventional neutron
diffractometer with 2< Q (nm)−1 < 40. The general behaviour of the pair potential could be
extracted and the contribution of the three-body terms examined. Therefore, their data form
a convenient starting point for our investigation, in which several densities, overlapping those
of [7], have been studied.

In a previous paper [10] we have briefly described the results of our experiment, with
the determination of the van der Waals coefficientB and the AT interaction strength. The
former turns out to be in agreement with previous estimates, and in this paper we concentrate
on a refined determination of the latter, by including in the analysis the results of two more
thermodynamic states and exploiting more efficiently the physical information contained in
the full measuredQ range.

Section 2 reviews the theory, while section 3 covers the experimental method and section
4 the data analysis. The results are shown in section 5 and we summarize our conclusions in
section 6. Some details of the data correction are illustrated in an appendix.
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2. Theoretical summary

In the theory of simple monatomic fluids, the most relevant quantity for the description of the
microscopic structural properties is the static structure factorS(Q), which is related to the pair
correlation functiong(r) by

S(Q) = 1 +n
∫

dr exp(−iQ · r)[g(r)− 1]. (3)

It is useful to introduce also the direct correlation functionc(r), defined via the
Ornstein–Zernike relation (withh(r) = g(r)− 1)

h(r) = c(r) + n
∫

dr′ c(r ′)h(|r − r′|) (4)

and its Fourier transform

c(Q) =
∫

dr exp(−iQ · r)c(r). (5)

From (3)–(5)c(Q) can be expressed in terms of the experimentally accessible quantityS(Q)

as

c(Q) = 1

n

(
1− 1

S(Q)

)
. (6)

For classical systems ofN atoms,g(r) and c(r) are functionals of the interatomic
interaction potential energyU(r1, . . . , rN), for which a cluster expansion will be assumed
to be valid at densities below the critical one:

U(r1, . . . , rN) =
∑
i<j

u2(rij ) +
∑
i<j<k

u3(ri , rj , rk) + · · · . (7)

Hereri is the position of theith atom,rij = |ri − rj |, andu2 andu3 are the pair and triplet
irreducible interaction potentials, respectively.

Among the various properties of the interaction potential which can be probed by
measuringS(Q), one of particular interest here is the asymptotic behaviour at large distances.
In fact, if only the pair and triplet terms are retained in (7) by neglecting many-body forces
beyond the triplet level, it can be demonstrated [2, 5] that

c(r) ∼
r→∞−βu2(r) +D(r) (8)

whereD(r) is the so-called dressed three-particle vertex

D(r12) = n
∫

dr3 g(r13)g(r23){exp[−βu3(r1, r2, r3)] − 1}. (9)

Equation (8) shows thatc(r), and consequentlyc(Q), directly reflect the properties of the
interatomic interaction at large distances. For an insulating fluid in its ground state the
dispersion term dominates the pair potential at large interatomic distances:

u2(r) ∼
r→∞−Br

−6 (10)

and, if the triple-dipole AT expression

u3(r1, r2, r3) = ν 1 + 3 cosθ1 cosθ2 cosθ3

(r12r13r23)3
(11)

is assumed to represent the irreducible three-body potential, whereν is the amplitude andθ1,
θ2, θ3 andr12, r13, r23 are the angles and side lengths of the triangle formed by three atoms,
one has [2, 5]

D(r) ∼
r→∞−

8π

3
βnνr−6. (12)
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Because of (8), (10) and (12)c(r) decays asymptotically to zero asr−6, and by means of
asymptotic Fourier analysis it is possible to demonstrate [1, 5] that this implies thatc(Q) can
be expanded at lowQ as

c(Q) = c(0) + γ2Q
2 + γ3|Q|3 + γ4Q

4 + · · · (13)

and in particular it contains a|Q|3 term, non-analytical atQ = 0, with a coefficientγ3 directly
proportional to the amplitude of ther−6 tail of c(r) and given by

γ3 = π2β

12

(
B − 8π

3
nν

)
. (14)

Therefore, the extraction of the cubic term in the small-Q behaviour ofc(Q) for at least two
different densities provides a direct measurement of the van der Waals parameterB and the
AT amplitudeν. We point out that in general bothc(0) andγ2 depend onu2 andu3, but
no analytical expressions in terms ofB andν exist. For this reason we have used numerical
methods [10] to exploit these relationships, and we shall discuss such results in section 5.

Theoretical calculations performed by means of the modified hyper-netted chain (MHNC)
integral equations, including the AT three-body term [5], have indicated that the suitable
Q-range for the extraction ofγ3 is 0.5< Q (nm−1) < 3.5. This is an important result because
that is theQ range which is typically accessible in a small-angle neutron diffraction experiment,
so that the feasibility of such a measurement ofγ3 mainly depends on the magnitude of the
effect compared to the other terms in (13) and to the overall accuracy that can be obtained in
the measurement ofc(Q).

As already mentioned in the introduction, an expansion similar to (13) can be written
for the structure factor (see (1)). However, it has been clearly shown [5] that there are two
advantages in using theQ expansion ofc(Q) instead ofS(Q): first, γ3 has the much simpler
dependence on the thermodynamic coordinates shown in (14), whileS3 = n[S(0)]2γ3 is state
dependent also through the isothermal compressibilityχT (see equation (2)); secondly, the
range ofQ where theQ4 term is negligible is much narrower in the expansion ofS(Q) thus
making it more difficult to extract the cubic part.

For the purposes of the present work it is particularly useful to consider the virial
(i.e. density) expansion ofc(Q) which is written at low density as [9]

c(Q) = c0(Q) + nc1(Q) + O(n2) (15)

where the zero-order term depends onu2 simply as

c0(Q) =
∫

dr exp(−iQ · r)[exp(−βu2(r))− 1]. (16)

The next term in (15) describes the effect of a third particle and is composed of two parts which
depend, respectively, onu2 only and on bothu2 andu3. We will denote it as

c1(Q) = c(2)1 (Q) + c(3)1 (Q) (17)

where

c
(2)
1 Q =

∫
dr12 dr13 exp(−iQ · r12)f12f13f23 (18)

c
(3)
1 (Q) =

∫
dr12 dr13 exp(−iQ · r12)(1 +f12)(1 +f13)(1 +f23)f123. (19)

In the last two equationsfij = exp[−βu2(rij )] − 1 is the Mayer function, andf123 =
exp[−βu3(r1, r2, r3)] − 1. We shall show that in the present experiment the sample densities
were low enough for terms of ordern2 and higher to be negligible in (15).
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3. Experiment

The measurements were performed on the small-angle diffractometer PAXE at the Orphée
reactor of the Laboratoire Ĺeon Brillouin, Saclay. The cross section of the incident neutron
beam was defined by a 9 mmcircular diaphragm placed in front of the sample container, and
the wavelengthλ was 0.40± 0.03 nm. The two-dimensional BF3 detector, made of 64× 64
cells each 1×1 cm2, was placed at 171.5 cm from the centre of the sample and rotated around
the sample position by such an amount as to have the detector centre horizontally shifted by
16 cm with respect to the incident neutron beam. The detector cells were grouped together in
rings of 1 cm width centred around the beam position, so that all cells in a ring correspond to
the same scattering angleθ . This configuration allows one to probe a momentum transfer range
0.5 < Q (nm−1) < 4.3, with a resolution1Q/Q ≈ 10%. Due to the smooth monotonic
behaviour versusQ of the diffraction spectra, the modestQ resolution does not affect the
results presented below. Between the exit window of the sample cell (see below) and the
27 mm thick sapphire window at the entrance of the vacuum tank containing the detector was
an air gap of 27 mm.

The sample cell, approved for use at pressures up to 800 bar, is made of stainless steel
with single-crystal sapphire windows of 8 mm thickness for the incident beam and 15 mm for
the outgoing neutrons. The inner distance between the two windows is 34.8 mm. In order to
minimize the amount of86Kr required to fill the container during the measurements, the inner
volume of the cell was designed to be of conical shape, internally clad with cadmium.

In order to reduce absorption and incoherent scattering we used a sample of the isotope
86Kr. Its composition for Kr isotopes was 99.3% for86Kr and 0.7% for84Kr. A maximum
contamination of 0.14 mol% nitrogen and 0.14 mol% hydrocarbon gases was declared by
the manufacturer. The coherent scattering cross sectionσc = 8.2 ± 0.5 b was measured
previously by means of neutron interferometry on the same gas [11], while in a transmission
experiment [11] no incoherent scattering could be detected within the experimental accuracy
and we assumeσinc = 0. Moreover, we useσabs= 0.007± 0.004 b forλ = 0.4 nm [12].

Table 1. PressureP , number densityn, ratio ofn to the critical number densityncr = 6.53 nm−3

and thermodynamic value ofS(0) for each of the measurements.n andS(0) are derived from the
equation of state of [13]. Also the valuesS0 atQ = 0 from the least squares fit to the experimental
S(Q) are given. The estimated uncertainties forn andS(0) are 0.5%.

State P (bar) n (nm−3) n/ncr S(0) S0

1 30.9± 0.1 0.804 0.123 1.141 1.135± 0.003
2 55.5± 0.2 1.522 0.233 1.270 1.257± 0.002
3 69.8± 0.3 1.984 0.303 1.352 1.330± 0.002
4 77.1± 0.3 2.231 0.342 1.394 1.346± 0.002
5 83.2± 0.3 2.431 0.372 1.423 1.390± 0.003

All measurements were made at room temperature (T = 297.6± 0.5 K). The equation-
of-state data of J̊uza andŠifner [13] are used for determining the number densities and the
isothermal compressibilities of the five investigated states of Kr, which are given in table 1
and will be referred to by the numbering shown in the first column. The slight differences
between the present values and the ones reported in [10] are due to the fact that in this work
the more recent data of [13] have been used. In order to apply all corrections and to obtain
absolutely normalized data, additional measurements were made on the empty cell, empty
beam, cadmium foil, 1.6 mm thick vanadium foil and methane at 2.30 bar (n = 0.0562 nm−3).
The main advantage of using CH4 instead of V for normalization is that with CH4 the same
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container as for the krypton could be used, avoiding systematic errors due to geometrical effects
or exchanging samples. However, an accurate model for the dynamic structure factor of CH4

is required [14]. The V measurement was made without the cell and used for comparison. The
beam time for the measurements on86Kr, V and CH4 was adjusted to achieve a statistical error
less than 0.5% in all experimental intensities. To monitor the stability of the experimental
setup each measurement was split into several runs. Figure 1 gives the raw data for the various
samples, in units of counts per cell per thousand monitor counts.
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Figure 1. Experimental intensitiesIexp for the various measurements. In (a): empty cell (open
circles) and Kr at the various densities (full circles from 1 to 5). The lowest Kr density (full circles)
is also shown for comparison in (b) together with cadmium (open diamonds), empty beam (crosses)
and methane (squares). In all spectra error bars are smaller than the size of the symbols. The data
are normalized to the number of detector cells at eachθ and to thousand monitor counts.

4. Corrections and data reduction

The data recorded with a cadmium foil in place of the 9 mm diaphragm have a very low,
almost constant intensity (see figure 1). After having subtracted this background, a ratio of the
empty cell to the empty beam spectra of∼0.81 for intermediate angles is obtained, whereas
the empty cell transmission atθ = 0◦ was calculated and measured to be higher than 0.9.
This unexpected higher attenuation could be explained if one bears in mind that the cross
section of sapphire rises at wavelengths shorter than 0.4 nm [15] and assuming that there is
a ‘halo’ with an average wavelength less than 0.4 nm around the beam of 0.4 nm neutrons.
It is worth mentioning that these halo neutrons are not present in the cadmium run, therefore
they must be a component of the beam. Also, the halo extends over all angles seen by the
detector, and at the largest angles it is restricted by the cadmium shielding in the sapphire cell.
This would explain the ‘droop’ seen on the empty cell spectra at high angles, as the cadmium
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lined cell would be collimating the halo. This effect is not seen when there is nothing in
the beam. Further evidence of the spreading of the halo neutrons over the angles is obtained
comparing the empty beam and the cadmium measurements which should be essentially the
same, if the halo were not present. Drawing rays back from the detector suggests that the
velocity selector might have transmitted a beam with an epithermal component (as well as
0.4 nm) and that component is scattered by the guides. This might confirm earlier observations
[16].

Therefore, all spectra should be split into two parts: a 0.4 nm beam and the neutron
halo part. However, in the appendix we show that, in the case of the present experiment,
explicit correction for the halo leads to results for the fully correctedc(Q) which, within our
experimental errors, coincide well with thec(Q) obtained by treating the background in the
conventional way, i.e. as if it were due entirely to 0.4 nm neutrons. Therefore, we present
here the results from the conventional correction procedure [17]. The details are given in the
appendix.

After correcting for background, multiple scattering and self-shielding, and normalizing
by means of the CH4 measurement, the observed differential scattering cross section per atom
is given by: (

dσ

d�

)
=
[
σinc

4π
+
σc

4π
S(Q)

]
+
σs

4π
P (Q) (20)

where in the present caseσinc = 0, andP(Q) is the correction due to inelastic scattering
including the wavelength dependent detector efficiency, calculated according to [18].P(Q)

is less than 3% for all densities in the present case.
Because the bound atom cross section of hydrogen is about ten times greater than that

of 86Kr, it is necessary to consider the effect of possible hydrogen impurities carefully. The
absolute magnitude of the scattering which would be produced by the maximum amount of
hydrogeneous contaminants is within the error of the86Kr cross section. By assuming for the
intensity scattered by these possible impurities a physically reasonable dependence onQ, we
have also estimated that the differences which the presence of such impurities would introduce
in the slope of the finalc(Q) would be less than the experimental errors.

The value ofS(Q) atQ = 0 is also obtained fromPVT data and agrees well with the
neutron data at all densities (maximum deviation less than 4%, average deviation 1.8%). In
order to eliminate even these small differences a final renormalization of the measuredS(Q)

was performed using the ratioS(0)/S0, with S(0) from PV T data andS0 obtained from
fitting the model functionS(Q) = S0 + S2Q

2 + S3Q
3 (see (1)) to the experimental data.

This renormalization factor varied between 1.006 and 1.036 depending on the density. We
note that, due to a new determination of densities and compressibilities, a slightly different
renormalization is obtained for the present data compared to those reported in [10]. The
renormalizedS(Q) values are shown in figure 2, where the data by Teitsma and Egelstaff [7]
are also reported for comparison. The agreement between the two sets of data is very good,
apart from the highestQ values at the two lowest densities, where a small systematic deviation
seems to be present. The experimentalc(Q) values were derived using (6) and the measured
structure factors, and are displayed in figure 3.

5. Results

A least-squares fit of (13) to the data forc(Q) was performed at each density up to theQ3

term. The fit does not improve significantly by including the termγ4Q
4, therefore we deleted

all terms of order 4 and higher. The fitted polynomials, also shown in figure 3, describe very
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Figure 2. ExperimentalS(Q) (dots) at the various densities. Data are shifted upwards by 0.2, 0.4,
0.6, 0.8 for states 2 to 5, respectively. The open circles are data from [7] at densities very close
to those of the present experiment: from bottom to top,n = 0.799, 1.517, 1.964 and 2.425 nm−3

(the last three are shifted upwards by 0.2, 0.4 and 0.8, respectively). In all spectra of the present
experiment error bars are smaller than the size of the symbols. The dots atQ = 0 are thermodynamic
values [13].
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Figure 3. Experimentalc(Q) (dots with error bars) at the various densities. Data are shifted
upwards by 0.05, 0.10, 0.15, 0.20 for states 2 to 5, respectively. The dots atQ = 0 are
thermodynamic values [13]. The lines are least-squares fits of model (13) up to and including
theQ3 term.

well theQ dependence ofc(Q).
We note that, due to the smallness of theQ3 term in (13), and of the density dependent

contribution in (14) with respect to the constant one, the accuracy of the present data is not
sufficient for the simultaneous determination ofB andν from (14). Such a determination, if
possible, would be a direct measurement of these parameters, independent of any assumption
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on the pair potential.
We have demonstrated in [10] that the experimental value ofB that can be extracted

from our data, i.e.(13 ± 1) × 10−24 J nm6, is in agreement with, although much less
accurate than, previous semiempirical results forB, namely(12.7 ± 0.9) × 10−24 J nm6

[19], (12.4±0.1)×10−24 J nm6 [20] and(12.2±0.1)×10−24 J nm6 [21]. Therefore we will
focus here on the experimental determination ofν.

In [10] it has also been shown that theγ2 coefficient in theQ expansion (13) ofc(Q) is
more sensitive to the three-body intensityν thanγ3. It has to be noted that the coefficientc(0),
which is closely connected to thermodynamics through the compressibility equation, is also
strongly affected by the three-body potential. However, since no known analytical expressions
relateν to c(0) andγ2, in [10] we were forced to apply a numerical analysis to findν from
γ2. Here we present an alternative method which is based on the use of the virial expansion
(15) of the fullc(Q). It can be shown that this procedure, which uses all the information on
ν contained in the experimentalc(Q), further increases the sensitivity toν with respect to the
one adopted in [10].

We used (15) to evaluatec0(Q) andc1(Q) at all theQ values of the experiment. The
experimentalc(Q) turns out to depend linearly on density, at fixedQ, in the whole investigated
ranges ofn andQ. The density dependence is shown in figure 4 for a few values ofQ together
with the straight lines obtained from a linear least-squares fit.
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Figure 4. Density behaviour ofc(Q) atQ = 0.47, 1.39, 2.31, 3.23 and 4.15 nm−1 for curves (a)
to (e), respectively: experimental points (dots with error bar) and best linear fits (solid lines).

The linearity ofc(Q) as a function ofn allows us to compare the experimental data
to calculated quantities by using (15)–(19) to computec(Q) for given potentialsu2 and
u3. We assume as a realistic model foru2 the one given by Aziz and Slaman (AS) with
B = 12.5× 10−24 J nm6 [22], while for u3 we take the AT expression with an amplitude
ν0 = 2.22× 10−26 J nm9 (that is, the average of three semiempirical determinations reported
in the literature with uncertainties of the order of 1–2%, namely 2.23× 10−26 J nm9 [19, 20]
and 2.20× 10−26 J nm9 [21]). The resulting curves forc(Q) with and without the AT three-
body interaction are shown in figure 5. The overall agreement with the measured data is
good, especially if the AT potential is taken into account. A closer look reveals that the
correspondence is best at the intermediate densities, while for the lowest and the highest ones
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some discrepancy, with opposite signs in the two cases, arises at the largerQ values. Since these
discrepancies are small but have a clear density dependence, they appear more evidently in the
fitted parametersc0(Q) andc1(Q) of the virial expansion (15), which show a good agreement
with the calculated ones forQ < 2 nm−1, but deviate from them at largerQ-values. In
particular, the experimentalc0(Q) is lower andc1(Q) higher than the calculations, in such
a way that these deviations compensate each other, at least partially, when the totalc(Q) is
evaluated, which explains why no clear deviations are visible in figure 2 of [10] and in the
present figure 5.
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Figure 5. c(Q) calculated from virial series (15) with two-body AS [22] and three-body AT [3]
potential withν = ν0 = 2.22× 10−26 J nm9 (full lines) and without AT potential (dashed lines).
For comparison the experimental data of figure 3 are shown again. Data are shifted upwards by
0.10, 0.20, 0.30, 0.40 for states 2 to 5, respectively. The dots atQ = 0 are thermodynamic values
[13].

It is therefore more reliable to determine the three-body potential strengthν from the total
c(Q) rather than from its density expansion. The method is based on the assumption that the
pair potential is accurately represented by the AS model and that the three-body interaction has
the analytical form (11). In order to determineν by this method, we first checked that the ratio
c
(3)
1 (Q)/ν, calculated using (19), is independent ofν over the wholeQ range of the present

experiment. This appears indeed to be the case within 0.2% forν < 3× 10−26 J nm9 and
allows us to determineν as the value which gives the best agreement between experimental
data and calculations ofc(Q), by varyingν and scalingc(3)1 (Q) proportionally. To this aim
we have rewritten (15) as

c(Q)− c0(Q)− nc(2)1 (Q) = nc(3)1 (Q, ν = ν0)
ν

ν0
(21)

so that, using the experimental data forc(Q), and the calculatedc0(Q), c
(2)
1 (Q)andc(3)1 (Q, ν =

ν0), ν can be obtained by averaging the values determined at each density and eachQ. We
remark that the experimental information used in (21) is given by the totalc(Q), not the fitted
density coefficientsc0(Q) andc1(Q). Moreover, in order to minimize the effect of the slight
discrepancy shown in figure 5 between the calculated and measuredc(Q), and to obtain a more
reliable determination ofν, we have restricted the number of used experimental points to that
region of the (Q,n) space where the data are fully compatible with the chosen potential models.
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The selection of theQ points satisfying this condition has been achieved by minimizing, at
each density and with respect toν, the quantity

χ2(ν) = 1

(NQ − 1)

NQ∑
i=1

[c(3)1,exp(Qi)− c(3)1,calc(Qi, ν)]2

s2
i

(22)

wherec(3)1,exp(Qi) is the left-hand side of (21), divided by the density, measured atQ = Qi

with estimated standard deviationsi , c
(3)
1,calc(Qi, ν) is the corresponding calculated quantity

andNQ is the number of pointsQi , numbered in order of increasingQ. The calculation of the
minimumχ2(ν) has been performed at each density as a function ofNQ.

We have then applied (21) to the determination ofν using all points at the intermediate
densities, the first 21 points at the lowest one, and the first 23 points at the highest one. The
resulting weighted-averaged value isν = (2.40± 0.21) × 10−26 J nm9, in agreement with
ν0. We estimate that the systematic uncertainty associated with the chosen normalization
procedure is 0.25× 10−26 J nm9. This new determination ofν is consistent with, but much
more accurate than, the one reported in [10], because of the different way of analysing data and
because in [10] only three densities out of the five measured had been considered. However,
sinceB � 8πνn/3, this does not significantly change the result forB obtained in [10].

Figure 6 showsc(3)1,exp(Q) averaged over all the densities considered at eachQ, together

with c(3)1,calc(Q, ν) calculated with bothν = ν0 and the value ofν obtained above. It is interesting
to look at the plot ofχ2(ν) as a function ofν (figure 7), which clearly shows that the sensitivity
to ν is enhanced at the higher densities, where the value ofν that minimizesχ2 is very stable.
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Figure 6. c
(3)
1,exp(Q) averaged over density as described in the text (dots with error bars) and

c
(3)
1,calc(Q, ν) calculated withν = ν0 (dashed line) andν = 2.40× 10−26 J nm9 (solid line).

6. Conclusions

The main result of this work consists in a new improved experimental determination of the
Axilrod–Teller three-body strengthν for krypton. We have improved on our previous [10]
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Figure 7. χ2(ν) as defined in (22) at the five experimental densities. The vertical lines correspond
to ν0 (dashed line) and toν = 2.40× 10−26 J nm9 (solid line).

result, obtainingν = 2.40×10−26 J nm9, with estimated statistic and systematic uncertainties
of 0.21× 10−26 J nm9 and 0.25× 10−26 J nm9, respectively. This result, which agrees with
previously published semiempirical ones, has been achieved using two more thermodynamical
states with respect to [10] and a new method of analysis which takes into account the dependence
on the potential contained in all the coefficients of theQ expansion of the direct correlation
functionc(Q). The adopted method has also allowed a more complete use of the fullQ range
measured in the experiment, thus exploiting the physical information contained in the data
down to 0.5 nm−1. A determination ofν andB independent of any assumption foru2 could
be obtained from the density dependence of the cubic coefficientγ3 in the low-Q expansion
(13) of c(Q). This however requires more accurate data than those presently available.
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Appendix

The intensity of neutrons scattered by the cell including the sample,I
exp
sc , contains contributions

from single scatteringI (1)sc , background scatteringBsc and multiple scatteringI (m)sc :

I exp
sc = I (1)∗sc (θ) + I (m)∗sc (θ) +Bsc(θ) (A1)

where the asterisk denotes that these intensities are attenuated by the sample and by (the
sapphire windows of) the cell. Similarly, we have for the empty container:

I exp
c (θ) = I (1)∗c (θ) + I (m)∗c (θ) +Bc(θ) (A2)



Neutron diffraction in Kr 3103

where the asterisk now means attenuation by the cell only. The attenuation is represented by
the Paalman–Pings factorsAαβ with α representing the scatterer andβ the attenuator:

I (1)∗sc = As,scI
(1)
s +Ac,scI

(1)
c (A3)

and similar expressions for the other attenuated intensities.
The differential cross section at scattering angleθ is related to the fully corrected intensity

of neutrons scattered by the sample by:

dσ(θ)

d�
= I

(1)
s (θ)

N8ε1�
= I

(1)
s (θ)

NM(θ)
(A4)

with 8 the incident neutron flux density,N the number of atoms in the sample,ε the
(wavelength-dependent) detector efficiency and1� the solid angle in the directionθ . In
the present case:

As,sc(0) = tsc= exp(−µsds− µcdc) = tstc (A5)

with tα the transmission of componentα having attenuation coefficientµα and thicknessdα.
We measuredtV, tCH4, tc andtsc using the direct neutron beam and the cadmium stop to

determine backgrounds. When inserting these results in the following formulae (e.g. (A6)), we
assume that all neutrons in the beam have a wavelength of 0.4 nm. The effect of the possible
presence of faster neutrons, mentioned in section 4, will be considered below. Since the present
experiment is restricted to small scattering angles the angular dependence ofAα,β(θ) is small,
in our case not more than 0.2%, whileAs,sc(θ) ≈ Ac,sc(θ).

The multiple scatteringI (m)s (θ) has been calculated by means of a Monte Carlo simulation
using MSCAT [23, 24]. It does not exceed 3% of the single scattering at the highest density.

From the intensities with empty beamIeb, and with cadmiumICd we obtain the background:

Bsc= ICd + tsc(Ieb− ICd) Bc = ICd + tc(Ieb− ICd)

BV = ICd + tV(Ieb− ICd) (A6)

which is to be subtracted from the measured intensities. The single scattering, not yet
normalized in absolute units, is then:

I (1)s =
δs

tsc
[I exp

sc − ICd− ts(I exp
c − ICd)] (A7)

whereδs is the ratio of single to total scattering as calculated with MSCAT.
For the normalization with vanadium we use forM(θ) in equation (A4):

MV(θ) = I
(1)
V

NV[1 + PV(θ)]σinc,V/4π
(A8)

whereI (1)V is obtained similarly to (A7) by:

I
(1)
V =

δV

tV
{I exp

V − ICd− tV(Ieb− ICd)} (A9)

andPV is the Placzek correction [18]. For normalization with CH4 we use a model for
d2σ/d� dE [25] and obtainM(θ) by:

MCH4(θ) =
I
(1)
CH4

NCH4(dσ(θ)/d�)CH4

(A10)

whereI (1)CH4
is obtained similarly to equation (A7) and[

dσ(θ)

d�

]
CH4

= 1

ε(E0)

∫ Emax

Emin

d2σ

d� dE
ε(E) dE (A11)
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with the integral taken at constantθ and the detector efficiency is given by:

ε(E) = 1− exp[−αλ(E)]
with α = 1.68 nm−1. It is found that the V-normalized Kr data extrapolate at all densities to
anS0 value about 10% higher thanS(0) obtained fromPVT data. This is the overall accuracy
of the absolute normalization using vanadium. However, the CH4-normalized results agree
much better withS(0), and were therefore used for the analysis described in section 5.

If a halo of neutrons with wavelength different from 0.4 nm is present, then it is necessary
to re-evaluate the transmission factors appearing in (A6) for the new wavelength. For the
case of86Kr there is only a minor change with wavelength, but for vanadium, methane and
the container the change is larger and may be derived from published data. As a test of
the significance of this effect, the background correction has been also performed assuming
an average halo wavelengths of 0.1 nm. The resulting instrumental normalization factors
MCH4 were identical, thus demonstrating the insensitivity of this function to the choice of the
halo wavelength. Moreover, using the methane normalization and assuming an average halo
wavelength of 0.1 nm, the differences forc(Q) obtained with or without explicit correction for
the halo are much smaller than the experimental errors, and, therefore, this correction has not
been applied. We remark that in both cases the data normalization procedure was the same.
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[14] Benmore C J, Mos B, Verkerk P and Egelstaff P A 1998J. Neutron Res.6 279
[15] Nieman H F, Tennant D C and Dolling G 1980Rev. Sci. Instrum.511299
[16] Teixeira J 1996 private communication
[17] Egelstaff P A 1987Neutron Scatteringpart B, ed D L Price and K Sk̈old (San Diego: Academic) p 405
[18] Yarnell J L, Katz M J, Wenzel R G and Koenig S H 1973Phys. Rev.A 7 2130
[19] Standard J M and Certain P R 1985J. Chem. Phys.833002
[20] Kumar A and Meath W J 1985Mol. Phys.54823
[21] Leonard P J and Barker J A 1975Theor. Chem. Adv. Perspect.1 117
[22] Aziz R A and Slaman M J 1986Mol. Phys.58679

In a more recent paper (Dham A K, Allnatt A R, Meath W J and Aziz R A 1989Mol. Phys.67 1291) a new
HFD-B type potential for Kr has been proposed. The calculatedc0(Q) andc1(Q) differ from those obtained
with the AS potential by an amount much smaller than our experimental uncertainties.

[23] Copley J R D1974Comput. Phys. Commun.7 289
Copley J R D1975Comput. Phys. Commun.9 59

[24] Copley J R D, Verkerk P, van Well A A andFredrikze H 1986Comput. Phys. Commun.40337
[25] Griffing G 1961Phys. Rev.1241489


